MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. 5049 Aluminum

Grade 29 titanium belongs to the titanium alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 6.8 to 11
2.0 to 18
Fatigue Strength, MPa 460 to 510
79 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 550 to 560
130 to 190
Tensile Strength: Ultimate (UTS), MPa 930 to 940
210 to 330
Tensile Strength: Yield (Proof), MPa 850 to 870
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
190
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
620
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.3
140
Thermal Expansion, µm/m-K 9.3
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 39
8.5
Embodied Energy, MJ/kg 640
150
Embodied Water, L/kg 410
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
59 to 570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 58 to 59
22 to 34
Strength to Weight: Bending, points 47 to 48
29 to 39
Thermal Diffusivity, mm2/s 2.9
56
Thermal Shock Resistance, points 68 to 69
9.3 to 15

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
94.7 to 97.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0
0.5 to 1.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 88 to 90.9
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants