MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. 6016 Aluminum

Grade 29 titanium belongs to the titanium alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 6.8 to 11
11 to 27
Fatigue Strength, MPa 460 to 510
68 to 89
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 550 to 560
130 to 170
Tensile Strength: Ultimate (UTS), MPa 930 to 940
200 to 280
Tensile Strength: Yield (Proof), MPa 850 to 870
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
660
Melting Onset (Solidus), °C 1560
610
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.3
190 to 210
Thermal Expansion, µm/m-K 9.3
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 39
8.2
Embodied Energy, MJ/kg 640
150
Embodied Water, L/kg 410
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
82 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 58 to 59
21 to 29
Strength to Weight: Bending, points 47 to 48
29 to 35
Thermal Diffusivity, mm2/s 2.9
77 to 86
Thermal Shock Resistance, points 68 to 69
9.1 to 12

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
96.4 to 98.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
1.0 to 1.5
Titanium (Ti), % 88 to 90.9
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15