MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. 6070 Aluminum

Grade 29 titanium belongs to the titanium alloys classification, while 6070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 6.8 to 11
5.6 to 8.6
Fatigue Strength, MPa 460 to 510
95 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 550 to 560
220 to 240
Tensile Strength: Ultimate (UTS), MPa 930 to 940
370 to 380
Tensile Strength: Yield (Proof), MPa 850 to 870
350

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
570
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.3
160
Thermal Expansion, µm/m-K 9.3
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 39
8.3
Embodied Energy, MJ/kg 640
150
Embodied Water, L/kg 410
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
880 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 58 to 59
38
Strength to Weight: Bending, points 47 to 48
42 to 43
Thermal Diffusivity, mm2/s 2.9
65
Thermal Shock Resistance, points 68 to 69
16 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
94.6 to 98
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
0.5 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
1.0 to 1.7
Titanium (Ti), % 88 to 90.9
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15