MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. AISI 301LN Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
23 to 51
Fatigue Strength, MPa 460 to 510
270 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 550 to 560
450 to 670
Tensile Strength: Ultimate (UTS), MPa 930 to 940
630 to 1060
Tensile Strength: Yield (Proof), MPa 850 to 870
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
890
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
15
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
2.7
Embodied Energy, MJ/kg 640
39
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
22 to 38
Strength to Weight: Bending, points 47 to 48
21 to 30
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 68 to 69
14 to 24

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
70.7 to 77.9
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.070 to 0.2
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants