MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. AISI 403 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
16 to 25
Fatigue Strength, MPa 460 to 510
200 to 340
Poisson's Ratio 0.32
0.28
Reduction in Area, % 17
47 to 50
Shear Modulus, GPa 40
76
Shear Strength, MPa 550 to 560
340 to 480
Tensile Strength: Ultimate (UTS), MPa 930 to 940
530 to 780
Tensile Strength: Yield (Proof), MPa 850 to 870
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
740
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
28
Thermal Expansion, µm/m-K 9.3
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.9
Embodied Energy, MJ/kg 640
27
Embodied Water, L/kg 410
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
19 to 28
Strength to Weight: Bending, points 47 to 48
19 to 24
Thermal Diffusivity, mm2/s 2.9
7.6
Thermal Shock Resistance, points 68 to 69
20 to 29

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
84.7 to 88.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants