MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. ASTM Grade HC Steel

Grade 29 titanium belongs to the titanium alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
6.0
Fatigue Strength, MPa 460 to 510
96
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 930 to 940
430
Tensile Strength: Yield (Proof), MPa 850 to 870
200

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 7.3
17
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
14
Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 39
2.8
Embodied Energy, MJ/kg 640
40
Embodied Water, L/kg 410
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
21
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
95
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 58 to 59
16
Strength to Weight: Bending, points 47 to 48
16
Thermal Diffusivity, mm2/s 2.9
4.5
Thermal Shock Resistance, points 68 to 69
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.5
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
61.9 to 74
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0