MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. ASTM Grade HG10 MNN Steel

Grade 29 titanium belongs to the titanium alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
23
Fatigue Strength, MPa 460 to 510
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 930 to 940
590
Tensile Strength: Yield (Proof), MPa 850 to 870
250

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
990
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
15
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
21
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
4.0
Embodied Energy, MJ/kg 640
58
Embodied Water, L/kg 410
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
21
Strength to Weight: Bending, points 47 to 48
20
Thermal Diffusivity, mm2/s 2.9
3.9
Thermal Shock Resistance, points 68 to 69
13

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
57.9 to 66.5
Manganese (Mn), % 0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0.2 to 0.3
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0