MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. EN 1.0213 Steel

Grade 29 titanium belongs to the titanium alloys classification, while EN 1.0213 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is EN 1.0213 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
12 to 25
Fatigue Strength, MPa 460 to 510
160 to 240
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
72 to 80
Shear Modulus, GPa 40
73
Shear Strength, MPa 550 to 560
230 to 270
Tensile Strength: Ultimate (UTS), MPa 930 to 940
320 to 430
Tensile Strength: Yield (Proof), MPa 850 to 870
220 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
53
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
18
Embodied Water, L/kg 410
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
33 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
120 to 300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
11 to 15
Strength to Weight: Bending, points 47 to 48
13 to 16
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
10 to 14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.060 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
99.245 to 99.67
Manganese (Mn), % 0
0.25 to 0.45
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0