MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. EN 1.4525 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
5.6 to 13
Fatigue Strength, MPa 460 to 510
480 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 930 to 940
1030 to 1250
Tensile Strength: Yield (Proof), MPa 850 to 870
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
860
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
18
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
2.8
Embodied Energy, MJ/kg 640
39
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
1820 to 3230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
36 to 45
Strength to Weight: Bending, points 47 to 48
29 to 33
Thermal Diffusivity, mm2/s 2.9
4.7
Thermal Shock Resistance, points 68 to 69
34 to 41

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
2.5 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
70.4 to 79
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.030
0 to 0.050
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.035
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants