MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. EN 1.5501 Steel

Grade 29 titanium belongs to the titanium alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
12 to 17
Fatigue Strength, MPa 460 to 510
180 to 270
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
63 to 73
Shear Modulus, GPa 40
73
Shear Strength, MPa 550 to 560
270 to 310
Tensile Strength: Ultimate (UTS), MPa 930 to 940
390 to 510
Tensile Strength: Yield (Proof), MPa 850 to 870
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
52
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
18
Embodied Water, L/kg 410
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
190 to 460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
14 to 18
Strength to Weight: Bending, points 47 to 48
15 to 18
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
11 to 15

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.080
0.13 to 0.16
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.4 to 99.269
Manganese (Mn), % 0
0.6 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0