MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. Grade CY40 Nickel

Grade 29 titanium belongs to the titanium alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
34
Fatigue Strength, MPa 460 to 510
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 930 to 940
540
Tensile Strength: Yield (Proof), MPa 850 to 870
220

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
960
Melting Completion (Liquidus), °C 1610
1350
Melting Onset (Solidus), °C 1560
1300
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
14
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.5
8.4
Embodied Carbon, kg CO2/kg material 39
9.1
Embodied Energy, MJ/kg 640
130
Embodied Water, L/kg 410
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 58 to 59
18
Strength to Weight: Bending, points 47 to 48
18
Thermal Diffusivity, mm2/s 2.9
3.7
Thermal Shock Resistance, points 68 to 69
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.4
Chromium (Cr), % 0
14 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 11
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0