MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. SAE-AISI 1039 Steel

Grade 29 titanium belongs to the titanium alloys classification, while SAE-AISI 1039 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is SAE-AISI 1039 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
14 to 18
Fatigue Strength, MPa 460 to 510
230 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
40 to 45
Shear Modulus, GPa 40
73
Shear Strength, MPa 550 to 560
380 to 420
Tensile Strength: Ultimate (UTS), MPa 930 to 940
610 to 690
Tensile Strength: Yield (Proof), MPa 850 to 870
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
51
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
18
Embodied Water, L/kg 410
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
88 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
310 to 890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
22 to 24
Strength to Weight: Bending, points 47 to 48
20 to 22
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
19 to 22

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0.37 to 0.44
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.5 to 98.9
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0