MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. SAE-AISI 1040 Steel

Grade 29 titanium belongs to the titanium alloys classification, while SAE-AISI 1040 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is SAE-AISI 1040 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
13 to 20
Fatigue Strength, MPa 460 to 510
220 to 340
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
40 to 45
Shear Modulus, GPa 40
73
Shear Strength, MPa 550 to 560
350 to 390
Tensile Strength: Ultimate (UTS), MPa 930 to 940
570 to 640
Tensile Strength: Yield (Proof), MPa 850 to 870
320 to 530

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
51
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
18
Embodied Water, L/kg 410
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
79 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
270 to 760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
20 to 23
Strength to Weight: Bending, points 47 to 48
19 to 21
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
18 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0.37 to 0.44
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.6 to 99.03
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0