MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. SAE-AISI 1552 Steel

Grade 29 titanium belongs to the titanium alloys classification, while SAE-AISI 1552 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is SAE-AISI 1552 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
11 to 14
Fatigue Strength, MPa 460 to 510
290 to 400
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
34 to 46
Shear Modulus, GPa 40
72
Shear Strength, MPa 550 to 560
460 to 510
Tensile Strength: Ultimate (UTS), MPa 930 to 940
760 to 840
Tensile Strength: Yield (Proof), MPa 850 to 870
460 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
51
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
1.4
Embodied Energy, MJ/kg 640
19
Embodied Water, L/kg 410
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
81 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
560 to 1130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
27 to 30
Strength to Weight: Bending, points 47 to 48
24 to 25
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 68 to 69
26 to 29

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0.47 to 0.55
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
97.9 to 98.3
Manganese (Mn), % 0
1.2 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0