MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. Type 3 Magnetic Alloy

Grade 29 titanium belongs to the titanium alloys classification, while Type 3 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is Type 3 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
180
Elongation at Break, % 6.8 to 11
43
Fatigue Strength, MPa 460 to 510
170
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
70
Shear Strength, MPa 550 to 560
380
Tensile Strength: Ultimate (UTS), MPa 930 to 940
550
Tensile Strength: Yield (Proof), MPa 850 to 870
210

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
910
Melting Completion (Liquidus), °C 1610
1370
Melting Onset (Solidus), °C 1560
1320
Specific Heat Capacity, J/kg-K 560
450
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 39
8.7
Embodied Energy, MJ/kg 640
120
Embodied Water, L/kg 410
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
190
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
120
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 58 to 59
18
Strength to Weight: Bending, points 47 to 48
17
Thermal Shock Resistance, points 68 to 69
18

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
2.0 to 3.0
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
4.0 to 6.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
9.9 to 19
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
75 to 78
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.010
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0