MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. C71580 Copper-nickel

Grade 29 titanium belongs to the titanium alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 6.8 to 11
40
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
51
Shear Strength, MPa 550 to 560
230
Tensile Strength: Ultimate (UTS), MPa 930 to 940
330
Tensile Strength: Yield (Proof), MPa 850 to 870
110

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
260
Melting Completion (Liquidus), °C 1610
1180
Melting Onset (Solidus), °C 1560
1120
Specific Heat Capacity, J/kg-K 560
400
Thermal Conductivity, W/m-K 7.3
39
Thermal Expansion, µm/m-K 9.3
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
41
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 39
5.1
Embodied Energy, MJ/kg 640
74
Embodied Water, L/kg 410
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
47
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 58 to 59
10
Strength to Weight: Bending, points 47 to 48
12
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 68 to 69
11

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Copper (Cu), % 0
65.5 to 71
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0
29 to 33
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5