MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. C83400 Brass

Grade 29 titanium belongs to the titanium alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 11
30
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 930 to 940
240
Tensile Strength: Yield (Proof), MPa 850 to 870
69

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
1040
Melting Onset (Solidus), °C 1560
1020
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.3
190
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 39
2.7
Embodied Energy, MJ/kg 640
43
Embodied Water, L/kg 410
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
55
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 58 to 59
7.7
Strength to Weight: Bending, points 47 to 48
9.9
Thermal Diffusivity, mm2/s 2.9
57
Thermal Shock Resistance, points 68 to 69
8.4

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
88 to 92
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7