MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. C87900 Brass

Grade 29 titanium belongs to the titanium alloys classification, while C87900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 11
25
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 930 to 940
480
Tensile Strength: Yield (Proof), MPa 850 to 870
240

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
130
Melting Completion (Liquidus), °C 1610
930
Melting Onset (Solidus), °C 1560
900
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.3
120
Thermal Expansion, µm/m-K 9.3
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 39
2.7
Embodied Energy, MJ/kg 640
46
Embodied Water, L/kg 410
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
270
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 58 to 59
17
Strength to Weight: Bending, points 47 to 48
17
Thermal Diffusivity, mm2/s 2.9
37
Thermal Shock Resistance, points 68 to 69
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
63 to 69.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.010
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
30 to 36
Residuals, % 0 to 0.4
0