MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. C94700 Bronze

Grade 29 titanium belongs to the titanium alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 11
7.9 to 32
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 930 to 940
350 to 590
Tensile Strength: Yield (Proof), MPa 850 to 870
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
190
Melting Completion (Liquidus), °C 1610
1030
Melting Onset (Solidus), °C 1560
900
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.3
54
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
34
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 39
3.5
Embodied Energy, MJ/kg 640
56
Embodied Water, L/kg 410
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 58 to 59
11 to 19
Strength to Weight: Bending, points 47 to 48
13 to 18
Thermal Diffusivity, mm2/s 2.9
16
Thermal Shock Resistance, points 68 to 69
12 to 21

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
85 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.050
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3