Grade 29 Titanium vs. K93500 Alloy
Grade 29 titanium belongs to the titanium alloys classification, while K93500 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is grade 29 titanium and the bottom bar is K93500 alloy.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Poisson's Ratio | 0.32 | |
0.3 |
Shear Modulus, GPa | 40 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 930 to 940 | |
490 to 810 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
270 |
Melting Completion (Liquidus), °C | 1610 | |
1430 |
Melting Onset (Solidus), °C | 1560 | |
1380 |
Specific Heat Capacity, J/kg-K | 560 | |
460 |
Thermal Expansion, µm/m-K | 9.3 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 36 | |
30 |
Density, g/cm3 | 4.5 | |
8.2 |
Embodied Carbon, kg CO2/kg material | 39 | |
4.7 |
Embodied Energy, MJ/kg | 640 | |
65 |
Embodied Water, L/kg | 410 | |
130 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
23 |
Strength to Weight: Axial, points | 58 to 59 | |
17 to 27 |
Strength to Weight: Bending, points | 47 to 48 | |
17 to 23 |
Thermal Shock Resistance, points | 68 to 69 | |
15 to 25 |
Alloy Composition
Aluminum (Al), % | 5.5 to 6.5 | |
0 to 0.1 |
Carbon (C), % | 0 to 0.080 | |
0 to 0.050 |
Chromium (Cr), % | 0 | |
0 to 0.25 |
Cobalt (Co), % | 0 | |
5.0 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
61.4 to 63 |
Magnesium (Mg), % | 0 | |
0 to 0.1 |
Manganese (Mn), % | 0 | |
0 to 0.6 |
Nickel (Ni), % | 0 | |
32 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.13 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.015 |
Ruthenium (Ru), % | 0.080 to 0.14 | |
0 |
Silicon (Si), % | 0 | |
0 to 0.25 |
Sulfur (S), % | 0 | |
0 to 0.015 |
Titanium (Ti), % | 88 to 90.9 | |
0 to 0.1 |
Vanadium (V), % | 3.5 to 4.5 | |
0 |
Zirconium (Zr), % | 0 | |
0 to 0.1 |
Residuals, % | 0 to 0.4 | |
0 |