MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. N08031 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 6.8 to 11
45
Fatigue Strength, MPa 460 to 510
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
81
Shear Strength, MPa 550 to 560
510
Tensile Strength: Ultimate (UTS), MPa 930 to 940
730
Tensile Strength: Yield (Proof), MPa 850 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.3
12
Thermal Expansion, µm/m-K 9.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 36
39
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 39
7.1
Embodied Energy, MJ/kg 640
96
Embodied Water, L/kg 410
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
270
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
25
Strength to Weight: Bending, points 47 to 48
22
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 68 to 69
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0
1.0 to 1.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
29 to 36.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0 to 0.030
0.15 to 0.25
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0