MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. N08120 Nickel

Grade 29 titanium belongs to the titanium alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
34
Fatigue Strength, MPa 460 to 510
230
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 550 to 560
470
Tensile Strength: Ultimate (UTS), MPa 930 to 940
700
Tensile Strength: Yield (Proof), MPa 850 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1000
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
11
Thermal Expansion, µm/m-K 9.3
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
45
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 39
7.2
Embodied Energy, MJ/kg 640
100
Embodied Water, L/kg 410
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
190
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
24
Strength to Weight: Bending, points 47 to 48
21
Thermal Diffusivity, mm2/s 2.9
3.0
Thermal Shock Resistance, points 68 to 69
17

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.080
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
21 to 41.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0 to 0.030
0.15 to 0.3
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0