MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. N08800 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while N08800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
4.5 to 34
Fatigue Strength, MPa 460 to 510
150 to 390
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 550 to 560
340 to 580
Tensile Strength: Ultimate (UTS), MPa 930 to 940
500 to 1000
Tensile Strength: Yield (Proof), MPa 850 to 870
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1390
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
12
Thermal Expansion, µm/m-K 9.3
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 39
5.3
Embodied Energy, MJ/kg 640
76
Embodied Water, L/kg 410
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
96 to 1740
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
18 to 35
Strength to Weight: Bending, points 47 to 48
18 to 28
Thermal Diffusivity, mm2/s 2.9
3.0
Thermal Shock Resistance, points 68 to 69
13 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0.15 to 0.6
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88 to 90.9
0.15 to 0.6
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants