MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. N10001 Nickel

Grade 29 titanium belongs to the titanium alloys classification, while N10001 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 6.8 to 11
45
Fatigue Strength, MPa 460 to 510
300
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
84
Shear Strength, MPa 550 to 560
550
Tensile Strength: Ultimate (UTS), MPa 930 to 940
780
Tensile Strength: Yield (Proof), MPa 850 to 870
350

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 340
900
Melting Completion (Liquidus), °C 1610
1620
Melting Onset (Solidus), °C 1560
1570
Specific Heat Capacity, J/kg-K 560
390
Thermal Expansion, µm/m-K 9.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
75
Density, g/cm3 4.5
9.2
Embodied Carbon, kg CO2/kg material 39
15
Embodied Energy, MJ/kg 640
200
Embodied Water, L/kg 410
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
290
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 58 to 59
24
Strength to Weight: Bending, points 47 to 48
21
Thermal Shock Resistance, points 68 to 69
25

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
4.0 to 6.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
58 to 69.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0.2 to 0.4
Residuals, % 0 to 0.4
0