Grade 29 Titanium vs. R30075 Cobalt
Grade 29 titanium belongs to the titanium alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is grade 29 titanium and the bottom bar is R30075 cobalt.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
210 to 250 |
Elongation at Break, % | 6.8 to 11 | |
12 |
Fatigue Strength, MPa | 460 to 510 | |
250 to 840 |
Poisson's Ratio | 0.32 | |
0.29 |
Reduction in Area, % | 17 | |
20 |
Shear Modulus, GPa | 40 | |
82 to 98 |
Tensile Strength: Ultimate (UTS), MPa | 930 to 940 | |
780 to 1280 |
Tensile Strength: Yield (Proof), MPa | 850 to 870 | |
480 to 840 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
320 |
Melting Completion (Liquidus), °C | 1610 | |
1360 |
Melting Onset (Solidus), °C | 1560 | |
1290 |
Specific Heat Capacity, J/kg-K | 560 | |
450 |
Thermal Conductivity, W/m-K | 7.3 | |
13 |
Thermal Expansion, µm/m-K | 9.3 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.0 | |
2.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.0 | |
2.1 |
Otherwise Unclassified Properties
Density, g/cm3 | 4.5 | |
8.4 |
Embodied Carbon, kg CO2/kg material | 39 | |
8.1 |
Embodied Energy, MJ/kg | 640 | |
110 |
Embodied Water, L/kg | 410 | |
530 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 62 to 100 | |
84 to 140 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 3420 to 3540 | |
560 to 1410 |
Stiffness to Weight: Axial, points | 13 | |
14 to 17 |
Stiffness to Weight: Bending, points | 35 | |
24 to 25 |
Strength to Weight: Axial, points | 58 to 59 | |
26 to 42 |
Strength to Weight: Bending, points | 47 to 48 | |
22 to 31 |
Thermal Diffusivity, mm2/s | 2.9 | |
3.5 |
Thermal Shock Resistance, points | 68 to 69 | |
21 to 29 |
Alloy Composition
Aluminum (Al), % | 5.5 to 6.5 | |
0 to 0.1 |
Boron (B), % | 0 | |
0 to 0.010 |
Carbon (C), % | 0 to 0.080 | |
0 to 0.35 |
Chromium (Cr), % | 0 | |
27 to 30 |
Cobalt (Co), % | 0 | |
58.7 to 68 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
0 to 0.75 |
Manganese (Mn), % | 0 | |
0 to 1.0 |
Molybdenum (Mo), % | 0 | |
5.0 to 7.0 |
Nickel (Ni), % | 0 | |
0 to 0.5 |
Nitrogen (N), % | 0 to 0.030 | |
0 to 0.25 |
Oxygen (O), % | 0 to 0.13 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.020 |
Ruthenium (Ru), % | 0.080 to 0.14 | |
0 |
Silicon (Si), % | 0 | |
0 to 1.0 |
Sulfur (S), % | 0 | |
0 to 0.010 |
Titanium (Ti), % | 88 to 90.9 | |
0 to 0.1 |
Tungsten (W), % | 0 | |
0 to 0.2 |
Vanadium (V), % | 3.5 to 4.5 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |