MakeItFrom.com
Menu (ESC)

Grade 3 Titanium vs. SAE-AISI 1084 Steel

Grade 3 titanium belongs to the titanium alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 3 titanium and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
220 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11
Fatigue Strength, MPa 300
320 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
28 to 45
Shear Modulus, GPa 39
72
Shear Strength, MPa 320
470 to 550
Tensile Strength: Ultimate (UTS), MPa 510
780 to 930
Tensile Strength: Yield (Proof), MPa 440
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 9.2
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
19
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 910
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
28 to 33
Strength to Weight: Bending, points 32
24 to 27
Thermal Diffusivity, mm2/s 8.6
14
Thermal Shock Resistance, points 37
25 to 30

Alloy Composition

Carbon (C), % 0 to 0.080
0.8 to 0.93
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.1 to 98.6
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0