MakeItFrom.com
Menu (ESC)

Grade 30 Titanium vs. ACI-ASTM CB6 Steel

Grade 30 titanium belongs to the titanium alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 30 titanium and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
18
Fatigue Strength, MPa 250
410
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
40
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 390
880
Tensile Strength: Yield (Proof), MPa 350
660

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
2.5
Embodied Energy, MJ/kg 600
36
Embodied Water, L/kg 230
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
150
Resilience: Unit (Modulus of Resilience), kJ/m3 590
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 26
26
Thermal Diffusivity, mm2/s 8.6
4.6
Thermal Shock Resistance, points 30
31

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
74.4 to 81
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.76
0
Residuals, % 0 to 0.4
0