MakeItFrom.com
Menu (ESC)

Grade 30 Titanium vs. AISI 301L Stainless Steel

Grade 30 titanium belongs to the titanium alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 30 titanium and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
22 to 50
Fatigue Strength, MPa 250
240 to 530
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 240
440 to 660
Tensile Strength: Ultimate (UTS), MPa 390
620 to 1040
Tensile Strength: Yield (Proof), MPa 350
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
2.7
Embodied Energy, MJ/kg 600
39
Embodied Water, L/kg 230
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 590
160 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
22 to 37
Strength to Weight: Bending, points 26
21 to 29
Thermal Diffusivity, mm2/s 8.6
4.1
Thermal Shock Resistance, points 30
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
70.7 to 78
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0 to 0.2
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.76
0
Residuals, % 0 to 0.4
0