Grade 30 Titanium vs. EN 1.4945 Stainless Steel
Grade 30 titanium belongs to the titanium alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is grade 30 titanium and the bottom bar is EN 1.4945 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
200 |
Elongation at Break, % | 23 | |
19 to 34 |
Fatigue Strength, MPa | 250 | |
230 to 350 |
Poisson's Ratio | 0.32 | |
0.28 |
Shear Modulus, GPa | 41 | |
77 |
Shear Strength, MPa | 240 | |
430 to 460 |
Tensile Strength: Ultimate (UTS), MPa | 390 | |
640 to 740 |
Tensile Strength: Yield (Proof), MPa | 350 | |
290 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
290 |
Maximum Temperature: Mechanical, °C | 320 | |
920 |
Melting Completion (Liquidus), °C | 1660 | |
1490 |
Melting Onset (Solidus), °C | 1610 | |
1440 |
Specific Heat Capacity, J/kg-K | 540 | |
470 |
Thermal Conductivity, W/m-K | 21 | |
14 |
Thermal Expansion, µm/m-K | 8.7 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.4 | |
2.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 6.9 | |
3.2 |
Otherwise Unclassified Properties
Density, g/cm3 | 4.5 | |
8.1 |
Embodied Carbon, kg CO2/kg material | 36 | |
5.0 |
Embodied Energy, MJ/kg | 600 | |
73 |
Embodied Water, L/kg | 230 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 | |
130 to 180 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 590 | |
210 to 760 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 35 | |
24 |
Strength to Weight: Axial, points | 24 | |
22 to 25 |
Strength to Weight: Bending, points | 26 | |
20 to 22 |
Thermal Diffusivity, mm2/s | 8.6 | |
3.7 |
Thermal Shock Resistance, points | 30 | |
14 to 16 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0.040 to 0.1 |
Chromium (Cr), % | 0 | |
15.5 to 17.5 |
Cobalt (Co), % | 0.2 to 0.8 | |
0 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.3 | |
57.9 to 65.7 |
Manganese (Mn), % | 0 | |
0 to 1.5 |
Nickel (Ni), % | 0 | |
15.5 to 17.5 |
Niobium (Nb), % | 0 | |
0.4 to 1.2 |
Nitrogen (N), % | 0 to 0.030 | |
0.060 to 0.14 |
Oxygen (O), % | 0 to 0.25 | |
0 |
Palladium (Pd), % | 0.040 to 0.080 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.035 |
Silicon (Si), % | 0 | |
0.3 to 0.6 |
Sulfur (S), % | 0 | |
0 to 0.015 |
Titanium (Ti), % | 98 to 99.76 | |
0 |
Tungsten (W), % | 0 | |
2.5 to 3.5 |
Residuals, % | 0 to 0.4 | |
0 |