MakeItFrom.com
Menu (ESC)

Grade 30 Titanium vs. SAE-AISI 5130 Steel

Grade 30 titanium belongs to the titanium alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 30 titanium and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
12 to 22
Fatigue Strength, MPa 250
230 to 330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 240
310 to 390
Tensile Strength: Ultimate (UTS), MPa 390
500 to 640
Tensile Strength: Yield (Proof), MPa 350
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
420
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
45
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 230
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 590
290 to 750
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
18 to 23
Strength to Weight: Bending, points 26
18 to 21
Thermal Diffusivity, mm2/s 8.6
12
Thermal Shock Resistance, points 30
16 to 20

Alloy Composition

Carbon (C), % 0 to 0.080
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
97.2 to 98.1
Manganese (Mn), % 0
0.7 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98 to 99.76
0
Residuals, % 0 to 0.4
0