MakeItFrom.com
Menu (ESC)

Grade 30 Titanium vs. S32750 Stainless Steel

Grade 30 titanium belongs to the titanium alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 30 titanium and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 23
17
Fatigue Strength, MPa 250
360
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 240
530
Tensile Strength: Ultimate (UTS), MPa 390
860
Tensile Strength: Yield (Proof), MPa 350
590

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
4.1
Embodied Energy, MJ/kg 600
56
Embodied Water, L/kg 230
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
130
Resilience: Unit (Modulus of Resilience), kJ/m3 590
860
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 26
26
Thermal Diffusivity, mm2/s 8.6
4.0
Thermal Shock Resistance, points 30
25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
58.1 to 66.8
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.24 to 0.32
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98 to 99.76
0
Residuals, % 0 to 0.4
0