MakeItFrom.com
Menu (ESC)

Grade 300 Maraging Steel vs. EN AC-46300 Aluminum

Grade 300 maraging steel belongs to the iron alloys classification, while EN AC-46300 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 300 maraging steel and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 6.5 to 18
1.1
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 1030 to 2030
200
Tensile Strength: Yield (Proof), MPa 760 to 1990
110

Thermal Properties

Latent Heat of Fusion, J/g 270
490
Melting Completion (Liquidus), °C 1480
630
Melting Onset (Solidus), °C 1430
530
Specific Heat Capacity, J/kg-K 450
880
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 34
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 5.1
7.7
Embodied Energy, MJ/kg 68
140
Embodied Water, L/kg 150
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
1.9
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 35 to 68
20
Strength to Weight: Bending, points 28 to 43
27
Thermal Shock Resistance, points 31 to 62
9.1

Alloy Composition

Aluminum (Al), % 0.050 to 0.15
84 to 90
Boron (B), % 0 to 0.0030
0
Calcium (Ca), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0
Cobalt (Co), % 8.5 to 9.5
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 65 to 68.4
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0 to 0.1
0.2 to 0.65
Molybdenum (Mo), % 4.6 to 5.2
0
Nickel (Ni), % 18 to 19
0 to 0.3
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
6.5 to 8.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.5 to 0.8
0 to 0.25
Zinc (Zn), % 0
0 to 0.65
Zirconium (Zr), % 0 to 0.020
0
Residuals, % 0
0 to 0.55