MakeItFrom.com
Menu (ESC)

Grade 300 Maraging Steel vs. C82400 Copper

Grade 300 maraging steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is grade 300 maraging steel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.5 to 18
1.0 to 20
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 1030 to 2030
500 to 1030
Tensile Strength: Yield (Proof), MPa 760 to 1990
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Melting Completion (Liquidus), °C 1480
1000
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 450
380
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 5.1
8.9
Embodied Energy, MJ/kg 68
140
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
10 to 83
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 35 to 68
16 to 33
Strength to Weight: Bending, points 28 to 43
16 to 26
Thermal Shock Resistance, points 31 to 62
17 to 36

Alloy Composition

Aluminum (Al), % 0.050 to 0.15
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Boron (B), % 0 to 0.0030
0
Calcium (Ca), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 8.5 to 9.5
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 65 to 68.4
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 4.6 to 5.2
0
Nickel (Ni), % 18 to 19
0 to 0.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.5 to 0.8
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.020
0
Residuals, % 0
0 to 0.5