MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. AISI 403 Stainless Steel

Grade 32 titanium belongs to the titanium alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
16 to 25
Fatigue Strength, MPa 390
200 to 340
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
47 to 50
Shear Modulus, GPa 40
76
Shear Strength, MPa 460
340 to 480
Tensile Strength: Ultimate (UTS), MPa 770
530 to 780
Tensile Strength: Yield (Proof), MPa 670
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 310
740
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.5
28
Thermal Expansion, µm/m-K 8.2
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 38
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
1.9
Embodied Energy, MJ/kg 530
27
Embodied Water, L/kg 180
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 47
19 to 28
Strength to Weight: Bending, points 41
19 to 24
Thermal Diffusivity, mm2/s 3.0
7.6
Thermal Shock Resistance, points 63
20 to 29

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
84.7 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.6 to 1.2
0
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.060 to 0.14
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0