MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. AWS E430

Grade 32 titanium belongs to the titanium alloys classification, while AWS E430 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is AWS E430.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 770
500

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.5
25
Thermal Expansion, µm/m-K 8.2
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.2
Embodied Energy, MJ/kg 530
31
Embodied Water, L/kg 180
120

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 47
18
Strength to Weight: Bending, points 41
18
Thermal Diffusivity, mm2/s 3.0
6.7
Thermal Shock Resistance, points 63
13

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
77.8 to 85
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.6 to 1.2
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.060 to 0.14
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0