MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. CC491K Bronze

Grade 32 titanium belongs to the titanium alloys classification, while CC491K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is CC491K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 770
260
Tensile Strength: Yield (Proof), MPa 670
120

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1610
980
Melting Onset (Solidus), °C 1560
900
Specific Heat Capacity, J/kg-K 550
370
Thermal Conductivity, W/m-K 7.5
71
Thermal Expansion, µm/m-K 8.2
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
15

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 32
3.1
Embodied Energy, MJ/kg 530
51
Embodied Water, L/kg 180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
27
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
67
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 47
8.1
Strength to Weight: Bending, points 41
10
Thermal Diffusivity, mm2/s 3.0
22
Thermal Shock Resistance, points 63
9.3

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
81 to 87
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Molybdenum (Mo), % 0.6 to 1.2
0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0.060 to 0.14
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0.6 to 1.4
4.0 to 6.0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zinc (Zn), % 0
4.0 to 6.0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0