MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C14200 Copper

Grade 32 titanium belongs to the titanium alloys classification, while C14200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
8.0 to 45
Fatigue Strength, MPa 390
76 to 130
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 460
150 to 200
Tensile Strength: Ultimate (UTS), MPa 770
220 to 370
Tensile Strength: Yield (Proof), MPa 670
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.5
190
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
45

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 32
2.6
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
24 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 47
6.8 to 11
Strength to Weight: Bending, points 41
9.1 to 13
Thermal Diffusivity, mm2/s 3.0
56
Thermal Shock Resistance, points 63
7.9 to 13

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.4 to 99.835
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Molybdenum (Mo), % 0.6 to 1.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0.015 to 0.040
Silicon (Si), % 0.060 to 0.14
0
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0