MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C17510 Copper

Grade 32 titanium belongs to the titanium alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
5.4 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Shear Strength, MPa 460
210 to 500
Tensile Strength: Ultimate (UTS), MPa 770
310 to 860
Tensile Strength: Yield (Proof), MPa 670
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 310
220
Melting Completion (Liquidus), °C 1610
1070
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.5
210
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 38
49
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 32
4.2
Embodied Energy, MJ/kg 530
65
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 47
9.7 to 27
Strength to Weight: Bending, points 41
11 to 23
Thermal Diffusivity, mm2/s 3.0
60
Thermal Shock Resistance, points 63
11 to 30

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.080
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.1
Molybdenum (Mo), % 0.6 to 1.2
0
Nickel (Ni), % 0
1.4 to 2.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Silicon (Si), % 0.060 to 0.14
0 to 0.2
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0
0 to 0.5