MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C19400 Copper

Grade 32 titanium belongs to the titanium alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
2.3 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Shear Strength, MPa 460
210 to 300
Tensile Strength: Ultimate (UTS), MPa 770
310 to 630
Tensile Strength: Yield (Proof), MPa 670
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
1090
Melting Onset (Solidus), °C 1560
1080
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.5
260
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 38
30
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 32
2.6
Embodied Energy, MJ/kg 530
40
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
41 to 1140
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 47
9.7 to 20
Strength to Weight: Bending, points 41
11 to 18
Thermal Diffusivity, mm2/s 3.0
75
Thermal Shock Resistance, points 63
11 to 22

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
96.8 to 97.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Molybdenum (Mo), % 0.6 to 1.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0.015 to 0.15
Silicon (Si), % 0.060 to 0.14
0
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zinc (Zn), % 0
0.050 to 0.2
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0
0 to 0.2