MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C48500 Brass

Grade 32 titanium belongs to the titanium alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11
13 to 40
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
39
Shear Strength, MPa 460
250 to 300
Tensile Strength: Ultimate (UTS), MPa 770
400 to 500
Tensile Strength: Yield (Proof), MPa 670
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 310
120
Melting Completion (Liquidus), °C 1610
900
Melting Onset (Solidus), °C 1560
890
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 7.5
120
Thermal Expansion, µm/m-K 8.2
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
29

Otherwise Unclassified Properties

Base Metal Price, % relative 38
23
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 530
46
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
120 to 500
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 47
14 to 17
Strength to Weight: Bending, points 41
15 to 17
Thermal Diffusivity, mm2/s 3.0
38
Thermal Shock Resistance, points 63
13 to 17

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
59 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Molybdenum (Mo), % 0.6 to 1.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Silicon (Si), % 0.060 to 0.14
0
Tin (Sn), % 0.6 to 1.4
0.5 to 1.0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zinc (Zn), % 0
34.3 to 39.2
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0
0 to 0.4