MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C87200 Bronze

Grade 32 titanium belongs to the titanium alloys classification, while C87200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C87200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
30
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 770
380
Tensile Strength: Yield (Proof), MPa 670
170

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
970
Melting Onset (Solidus), °C 1560
860
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 7.5
28
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 38
29
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 530
44
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
93
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
130
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 47
12
Strength to Weight: Bending, points 41
14
Thermal Diffusivity, mm2/s 3.0
8.0
Thermal Shock Resistance, points 63
14

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0 to 1.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
89 to 99
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 2.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0.6 to 1.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0.060 to 0.14
1.0 to 5.0
Tin (Sn), % 0.6 to 1.4
0 to 1.0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zinc (Zn), % 0
0 to 5.0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0