MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. S21904 Stainless Steel

Grade 32 titanium belongs to the titanium alloys classification, while S21904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
17 to 51
Fatigue Strength, MPa 390
380 to 550
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 460
510 to 620
Tensile Strength: Ultimate (UTS), MPa 770
700 to 1000
Tensile Strength: Yield (Proof), MPa 670
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1350
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.5
14
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 38
15
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
3.0
Embodied Energy, MJ/kg 530
43
Embodied Water, L/kg 180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
380 to 2070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 47
25 to 36
Strength to Weight: Bending, points 41
23 to 29
Thermal Diffusivity, mm2/s 3.0
3.8
Thermal Shock Resistance, points 63
15 to 21

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
19 to 21.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
59.5 to 67.4
Manganese (Mn), % 0
8.0 to 10
Molybdenum (Mo), % 0.6 to 1.2
0
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0 to 0.030
0.15 to 0.4
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.060 to 0.14
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0