MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. S44800 Stainless Steel

Grade 32 titanium belongs to the titanium alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11
23
Fatigue Strength, MPa 390
300
Poisson's Ratio 0.32
0.27
Reduction in Area, % 28
45
Shear Modulus, GPa 40
82
Shear Strength, MPa 460
370
Tensile Strength: Ultimate (UTS), MPa 770
590
Tensile Strength: Yield (Proof), MPa 670
450

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.5
17
Thermal Expansion, µm/m-K 8.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 38
19
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
3.8
Embodied Energy, MJ/kg 530
52
Embodied Water, L/kg 180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 47
21
Strength to Weight: Bending, points 41
20
Thermal Diffusivity, mm2/s 3.0
4.6
Thermal Shock Resistance, points 63
19

Alloy Composition

Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
62.6 to 66.5
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0.6 to 1.2
3.5 to 4.2
Nickel (Ni), % 0
2.0 to 2.5
Nitrogen (N), % 0 to 0.030
0 to 0.020
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.060 to 0.14
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0