MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. ACI-ASTM CN3MN Steel

Grade 33 titanium belongs to the titanium alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 23
39
Fatigue Strength, MPa 250
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 390
620
Tensile Strength: Yield (Proof), MPa 350
300

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
13
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
33
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 33
6.2
Embodied Energy, MJ/kg 530
84
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
200
Resilience: Unit (Modulus of Resilience), kJ/m3 590
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 8.7
3.4
Thermal Shock Resistance, points 30
14

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0.1 to 0.2
20 to 22
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
41.4 to 50.3
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0.35 to 0.55
23.5 to 25.5
Nitrogen (N), % 0 to 0.030
0.18 to 0.26
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0