MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. AISI 440B Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
3.0 to 18
Fatigue Strength, MPa 250
260 to 850
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 240
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 390
740 to 1930
Tensile Strength: Yield (Proof), MPa 350
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
23
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.2
Embodied Energy, MJ/kg 530
31
Embodied Water, L/kg 200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
57 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
27 to 70
Strength to Weight: Bending, points 26
24 to 45
Thermal Diffusivity, mm2/s 8.7
6.1
Thermal Shock Resistance, points 30
27 to 70

Alloy Composition

Carbon (C), % 0 to 0.080
0.75 to 1.0
Chromium (Cr), % 0.1 to 0.2
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
78.2 to 83.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.35 to 0.55
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0