MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. EN 1.4618 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
51
Fatigue Strength, MPa 250
240 to 250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 240
480 to 500
Tensile Strength: Ultimate (UTS), MPa 390
680 to 700
Tensile Strength: Yield (Proof), MPa 350
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
900
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
39
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 590
160 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
24 to 25
Strength to Weight: Bending, points 26
22 to 23
Thermal Diffusivity, mm2/s 8.7
4.0
Thermal Shock Resistance, points 30
15 to 16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0.1 to 0.2
16.5 to 18.5
Copper (Cu), % 0
1.0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
62.7 to 72.5
Manganese (Mn), % 0
5.5 to 9.5
Nickel (Ni), % 0.35 to 0.55
4.5 to 5.5
Nitrogen (N), % 0 to 0.030
0 to 0.15
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.070
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0