MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. SAE-AISI 1060 Steel

Grade 33 titanium belongs to the titanium alloys classification, while SAE-AISI 1060 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is SAE-AISI 1060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
10 to 13
Fatigue Strength, MPa 250
260 to 340
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
34 to 51
Shear Modulus, GPa 41
72
Shear Strength, MPa 240
370 to 450
Tensile Strength: Ultimate (UTS), MPa 390
620 to 740
Tensile Strength: Yield (Proof), MPa 350
400 to 540

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
1.4
Embodied Energy, MJ/kg 530
19
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
58 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 590
430 to 790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
22 to 26
Strength to Weight: Bending, points 26
21 to 23
Thermal Diffusivity, mm2/s 8.7
14
Thermal Shock Resistance, points 30
20 to 24

Alloy Composition

Carbon (C), % 0 to 0.080
0.55 to 0.65
Chromium (Cr), % 0.1 to 0.2
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.4 to 98.9
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0.35 to 0.55
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0