MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. SAE-AISI A8 Steel

Grade 33 titanium belongs to the titanium alloys classification, while SAE-AISI A8 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is SAE-AISI A8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 390
700 to 1920

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
37
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
8.5
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 33
2.3
Embodied Energy, MJ/kg 530
31
Embodied Water, L/kg 200
73

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
25 to 68
Strength to Weight: Bending, points 26
22 to 44
Thermal Diffusivity, mm2/s 8.7
9.9
Thermal Shock Resistance, points 30
22 to 62

Alloy Composition

Carbon (C), % 0 to 0.080
0.5 to 0.6
Chromium (Cr), % 0.1 to 0.2
4.8 to 5.5
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
88.5 to 91.9
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.2 to 1.7
Nickel (Ni), % 0.35 to 0.55
0 to 0.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0.75 to 1.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.1 to 99.52
0
Tungsten (W), % 0
1.0 to 1.5
Residuals, % 0 to 0.4
0