MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. SAE-AISI A9 Steel

Grade 33 titanium belongs to the titanium alloys classification, while SAE-AISI A9 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is SAE-AISI A9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 390
770 to 2030

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
35
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
4.7
Embodied Energy, MJ/kg 530
70
Embodied Water, L/kg 200
82

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
28 to 73
Strength to Weight: Bending, points 26
24 to 46
Thermal Diffusivity, mm2/s 8.7
9.6
Thermal Shock Resistance, points 30
25 to 66

Alloy Composition

Carbon (C), % 0 to 0.080
0.45 to 0.55
Chromium (Cr), % 0.1 to 0.2
4.8 to 5.5
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
87 to 90.5
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0.35 to 0.55
1.3 to 1.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
1.0 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.1 to 99.52
0
Vanadium (V), % 0
0.8 to 1.4
Residuals, % 0 to 0.4
0