MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. C96400 Copper-nickel

Grade 33 titanium belongs to the titanium alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 23
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
51
Tensile Strength: Ultimate (UTS), MPa 390
490
Tensile Strength: Yield (Proof), MPa 350
260

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
260
Melting Completion (Liquidus), °C 1660
1240
Melting Onset (Solidus), °C 1610
1170
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
28
Thermal Expansion, µm/m-K 8.7
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
45
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
5.9
Embodied Energy, MJ/kg 530
87
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
100
Resilience: Unit (Modulus of Resilience), kJ/m3 590
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 8.7
7.8
Thermal Shock Resistance, points 30
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
62.3 to 71.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.35 to 0.55
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0
0 to 0.5